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Earth system models
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General circulation models

Navier-Stokes: Equations are “exact”,
but cannot be solve analytically

General Circulation Models (GCMs)
implement numerical solutions on
discrete grid
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General circulation models

Navier-Stokes: Equations are “exact”,
but cannot be solve analytically Global 1°

Primitive equation models: , . . o
- Numerical solutions on discrete grid \ €1
- General Circulation Models (GCMs) » a0 ! : ,

Deterministic, but chaotic:
- Perpetual novelty
- Infinite sensitivity to initial conditions

Scale interactions: energy cascade
requires parameterization of subgrid-
scale effects






Representing ocean carbon biogeochemical dynamics

Biology sets upper ocean DIC budget

Flux = k,a(pCO;* pCO;™) Atmosphere

Biomass

Dissolved inorganic carbon

DIC = [H,CO3] + [HCO3 ] + [CO57]

~0.5% ~88.6% ~10.9%
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Biology sets upper ocean DIC budget
Ecosystem function controls C export

There are no universally-accepted
governing equations:

- Plankton function types
- Transfer functions
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Representing ocean carbon biogeochemical dynamics

Air-sea CO, flux

Biology sets upper ocean DIC budget Model

(CESM 1°)

Ecosystem function controls C export

There are no universally-accepted
governing equations:

- Plankton function types Obse rvational 08

- Transfer functions Estimate

(Landschutzer et al.) £

Explicit carbon chemistry

Models are built at the process-level;
simulations show emergent features

Long et al., JAMES (2021)
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Data assimilation

/ \

Free-running models display systematic bias

DA can produce a model-data state -
estimate (“reanalysis”), reducing bias . ‘ v v .’
%. s

Data
Assimilation

DA provides model states that are maximally
consistent with observations

Ozone Forecast
+ errors

DA can provide explicit uncertainty Ozone Observations
estimates and assessments of which + errors
observations are most important

Two approaches:
- Sequential ensemble DA (filter) Ozone Analysis
- Variational methods (smoother) +errors

Lahoz & Schneider (2014)



Ensemble sequential data assimilation
Ensemble data assimilation @

Integrate ensemble of models

Simulations
running in
parallel

" Time

Courtesy of D. Amrhein (NCAR) Anderson, et al. (2007)
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Ensemble sequential data assimilation

Challenges and shortcomings

Observation Observation
Adding increments to the stat n —r o
9 e state ca Bl e iy :

| T

break the model physics

Sample models

Two often-necessary tools: inflation like the data
and localization

Simulations
running in
parallel

Courtesy of D. Amrhein (NCAR) Anderson, et al. (2007)



Variational methods solve an iterative optimization problem to
minimize an objective function

Example: the
Atmospheric
ECCO boundgry
. conditions
state estimate :
d FSshwater fluxes
Y- (-P-R)
Control Initial
. conditions
Va rlables, T(0), S(0)

U

Parameterized
Physics



Variational methods in practice: the ECCO state estimate

Inverse problem solved by ECCO
Solve for a set of

- Initial conditions,

- atmospheric boundary forcing,
- 0ocean mixing parameters,

to minimize residuals between the model solution
and the observations in a least-squares sense.

Advantages
e (Conserves ocean properties

e Uses information from past and future to
constrain state (smoother rather than a filter)

Disadvantages

e (Can generate spurious fluxes, e.g. in Lab. Sea
e No “errors of the day”

e No uncertainty quantification

e EXxpensive to maintain adjoint

Courtesy of D. Amrhein (NCAR) & D. Menemenlis (JPL)
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Optimization of observing location

What is an optimal sampling strategy to best constrain
a quantity of interest (i.e., “verification variable”)?

Time = 0 years Time = 15 years
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Gharamti et al. (2014)
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Optimization of observing location

What is an optimal sampling strategy to best constrain
a quantity of interest (i.e., “verification variable”)?

Gharamti et al. (2014)
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Optimal observing system design

What is an optimal sampling strategy to best constrain
a quantity of interest (i.e., “verification variable”)?
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MRV Challenges

Unfavorable signal-to-noise ratios
- Large background fields
- Dynamic variability

Establishing baseline counterfactual to assess
additionality

Large spatiotemporal scales
- Slow CO, equilibration timescale
- Large-scale overturning circulation

Model skill and parameter uncertainty

Unknown unknowns
- Ecosystem compensation




Ocean alkalinity enhancement
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Ocean alkalinity enhancement
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Ocean alkalinity enhancement
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Results from idealized experiments

Simulated alkalinity release (CESM 0.1°)
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Particle dispersion modeling

Lagrangian (i.e., flow-following) 45°N
frameworks provide complementary
information to GCMs

Latitude

Particles can be advected in pre- 30° N
computed velocity fields

\
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Lagrangian back-trajectories & footprints computed for aircraft samples
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Morgan et al., JGR, (2019)



Global MacroAlgae Cultivation MODelling System (G-MACMODS)
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Courtesy of I. Arzeno (UCI) Frieder et al. (2022)



Projecting potential macroalgae yields: uncertainty in parameters

Ambient nutrients Flux-limited nutrients

Uncertainty analysis around biological
parameters:

* Maximum uptake rate

* Half saturation constant
* Compensation irradiance
e Saturation irradiance

* Maximum growth rate tDW/km?2/yr 0 600 1200 1800 2400 >3000
* Crowding : |

* Ratio of biomass to surface area tC/km?yr 0 200 400 600 800 >1000

* Minimum nitrogen cell quota
* Max nitrogen cell quota

* Drag coefficient

* Nitrogen exudation rate

* Mortality rate

n = 400 Monte Carlo runs for
each seaweed group and
each nutrient scenario

1s.d.

(ambient and flux-limited) (tC/km?yr) 0 50 100 150 200 250 300
n=400 per seaweed type

Courtesy of I. Arzeno (UCI) Arzeno et al. (in revision)



Separation of concerns: mapping re-emergence timescales

Fraction of carbon remaining sequestered after injection at depth
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Experimental framework for MRV
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Experimental framework for MRV
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Computation and data constraints

Computational constraints

Develop creative solutions
- E.g., geophysical modeling + machine learning

Need hierarchy of modeling tools tailored
to questions of interest

- Modeling systems built from interoperable
components

- Enable bespoke sandboxes

Resolution x Domain




Interoperability between modular components

Marine Biogeochemical Library (MARBL)

Modularity: facilitated by coupling ——
infrastructure (oGcm)
MARBL Driver MARBL
Enable “mix-and-match” capabilities e | = -
—
- parameters 1 E;: :
forcingi/o e nutrient/carbon
. g E,‘
Leverage interoperability to output . = e |
- Isolate and study processes
- Explore structural uncertainty
- Leverage communities of practice 5
P =
ot T V- (Up J(¢)




Computation and data constraints

Big Data

Computation for analysis is a serious effort
- Collaborative development
- Data science/ML

Decision support “dashboards”

Computational Narratives: Platforms for
community & policy engagement

Resolution x Domain




Earth System Data Science

PANG=O

pangeo.lo
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PROJECT PYTHIA
projectpythia.org

LENAP

leap.columbia.edu

ncar.github.io/esds

NCAR
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$10M $10M
Bespoke modeling applications Highly resolved observational deployments
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Ohman et al. 2013
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